| 1. | Gdi uses three coordinate spaces : world , page , and device Gdi +使用三个坐标空间:世界、页面和设备。 |
| 2. | Are in the world coordinate space )位于世界坐标空间内。 |
| 3. | The coordinates of the endpoints of your line in the three coordinate spaces are as follows 下表显示了三种坐标空间中线条终点的坐标: |
| 4. | The graphics engine maintains the coordinates of geometric shapes in a path in world coordinate space 图形引擎在世界坐标空间中维护路径内的几何形状的坐标。 |
| 5. | Note that the page coordinate space has its origin at the upper - left corner of the client area ; this will always be the case 请注意,页面坐标空间的原点在工作区的左上角,情况将总是如此。 |
| 6. | Transforms an array of points from one coordinate space to another using the current world and page transformations of this 的当前世界变换和页变换,将点数组从一个坐标空间转换到另一个坐标空间。 |
| 7. | Note that because the origin of the world coordinate space is at the upper - left corner of the client area , the page coordinates are the same as the world coordinates 请注意,由于世界坐标空间的原点在工作区的左上角,因此页面坐标与世界坐标相同。 |
| 8. | If we assume that the display device has 96 dots per inch in the horizontal direction and 96 dots per inch in the vertical direction , the endpoints of the line in the preceding example have the following coordinates in the three coordinate spaces 如果我们假定显示设备在水平方向和垂直方向每英寸都有96个点,则上例中直线的终结点在三个坐标空间中分别具有以下坐标: |
| 9. | A general solution to the schrsdinger equation about the motion of the entangled atom of two cases is obtained . subsequently , the wave functions in momentum and coordinate spaces are given according to the atoms " ini initial nd next , the dynamic properties of the two - atom entangled system are manifested 我们首先写出两种情况下系统的哈密顿量并解出薛定谔方程,可得到两原子纠缠系统波函数的一般解,然后根据原子的初始条件得到了波函数在动量表象和坐标表象的特解。 |
| 10. | Starting from the generativ e procedure of conjugate curves the generator 2 and generated curve 1 ar e re garded as two bunches of spatial point sets and the 1 is being considered a s a macroscopic expression in s1 coordinate space of points , satisfying the co n dition of conjugation during the course of relative movement , on 2 从共轭曲线的创成过程出发,将母曲线2和创成曲线1看作两簇空间点集,认为1是由相对运动过程中2上满足共轭条件的点在s1坐标空间中的宏观表现。 |